Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 21(212): 20230597, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471532

RESUMO

The sponge-like biomineralized calcite materials found in echinoderm skeletons are of interest in terms of both structure formation and biological function. Despite their crystalline atomic structure, they exhibit curved interfaces that have been related to known triply periodic minimal surfaces. Here, we investigate the endoskeleton of the sea urchin Cidaris rugosa that has long been known to form a microstructure related to the Primitive surface. Using X-ray tomography, we find that the endoskeleton is organized as a composite material consisting of domains of bicontinuous microstructures with different structural properties. We describe, for the first time, the co-occurrence of ordered single Primitive and single Diamond structures and of a disordered structure within a single skeletal plate. We show that these structures can be distinguished by structural properties including solid volume fraction, trabeculae width and, to a lesser extent, interface area and mean curvature. In doing so, we present a robust method that extracts interface areas and curvature integrals from voxelized datasets using the Steiner polynomial for parallel body volumes. We discuss these very large-scale bicontinuous structures in the context of their function, formation and evolution.


Assuntos
Carbonato de Cálcio , Ouriços-do-Mar , Animais , Carbonato de Cálcio/química
2.
Parasitol Res ; 122(12): 2891-2905, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776335

RESUMO

Cryptosporidium is a major cause of diarrhoeal disease and mortality in young children in resource-poor countries, for which no vaccines or adequate therapeutic options are available. Infection in humans is primarily caused by two species: C. hominis and C. parvum. Despite C. hominis being the dominant species infecting humans in most countries, very little is known about its growth characteristics and life cycle in vitro, given that the majority of our knowledge of the in vitro development of Cryptosporidium has been based on C. parvum. In the present study, the growth and development of two C. parvum isolates (subtypes Iowa-IIaA17G2R1 and IIaA18G3R1) and one C. hominis isolate (subtype IdA15G1) in HCT-8 cells were examined and compared at 24 h and 48 h using morphological data acquired with scanning electron microscopy. Our data indicated no significant differences in the proportion of meronts or merozoites between species or subtypes at either time-point. Sexual development was observed at the 48-h time-point across both species through observations of both microgamonts and macrogamonts, with a higher frequency of macrogamont observations in C. hominis (IdA15G1) cultures at 48-h post-infection compared to both C. parvum subtypes. This corresponded to differences in the proportion of trophozoites observed at the same time point. No differences in proportion of microgamonts were observed between the three subtypes, which were rarely observed across all cultures. In summary, our data indicate that asexual development of C. hominis is similar to that of C. parvum, while sexual development is accelerated in C. hominis. This study provides new insights into differences in the in vitro growth characteristics of C. hominis when compared to C. parvum, which will facilitate our understanding of the sexual development of both species.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Criança , Animais , Humanos , Pré-Escolar , Iowa , Estágios do Ciclo de Vida
3.
Trends Parasitol ; 39(8): 668-681, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302958

RESUMO

To best understand parasite, host, and vector morphologies, host-parasite interactions, and to develop new drug and vaccine targets, structural data should, ideally, be obtained and visualised in three dimensions (3D). Recently, there has been a significant uptake of available 3D volume microscopy techniques that allow collection of data across centimetre (cm) to Angstrom (Å) scales by utilising light, X-ray, electron, and ion sources. Here, we present and discuss microscopy tools available for the collection of 3D structural data, focussing on electron microscopy-based techniques. We highlight their strengths and limitations, such that parasitologists can identify techniques best suited to answer their research questions. Additionally, we review the importance of volume microscopy to the advancement of the field of parasitology.


Assuntos
Microscopia , Parasitos , Animais , Microscopia/métodos , Interações Hospedeiro-Parasita
4.
Nat Microbiol ; 8(3): 510-521, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759754

RESUMO

Behaviours such as chemotaxis can facilitate metabolic exchanges between phytoplankton and heterotrophic bacteria, which ultimately regulate oceanic productivity and biogeochemistry. However, numerically dominant picophytoplankton have been considered too small to be detected by chemotactic bacteria, implying that cell-cell interactions might not be possible between some of the most abundant organisms in the ocean. Here we examined how bacterial behaviour influences metabolic exchanges at the single-cell level between the ubiquitous picophytoplankton Synechococcus and the heterotrophic bacterium Marinobacter adhaerens, using bacterial mutants deficient in motility and chemotaxis. Stable-isotope tracking revealed that chemotaxis increased nitrogen and carbon uptake of both partners by up to 4.4-fold. A mathematical model following thousands of cells confirmed that short periods of exposure to small but nutrient-rich microenvironments surrounding Synechococcus cells provide a considerable competitive advantage to chemotactic bacteria. These findings reveal that transient interactions mediated by chemotaxis can underpin metabolic relationships among the ocean's most abundant microorganisms.


Assuntos
Quimiotaxia , Synechococcus , Oceanos e Mares , Processos Heterotróficos/fisiologia , Synechococcus/genética , Fitoplâncton/genética , Fitoplâncton/metabolismo
5.
J Exp Bot ; 74(6): 1974-1989, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575916

RESUMO

Although significant intraspecific variation in photosynthetic phosphorus (P) use efficiency (PPUE) has been shown in numerous species, we still know little about the biochemical basis for differences in PPUE among genotypes within a species. Here, we grew two high PPUE and two low PPUE chickpea (Cicer arietinum) genotypes with low P supply in a glasshouse to compare their photosynthesis-related traits, total foliar P concentration ([P]) and chemical P fractions (i.e. inorganic P (Pi), metabolite P, lipid P, nucleic acid P, and residual P). Foliar cell-specific nutrient concentrations including P were characterized using elemental X-ray microanalysis. Genotypes with high PPUE showed lower total foliar [P] without slower photosynthetic rates. No consistent differences in cellular [P] between the epidermis and mesophyll cells occurred across the four genotypes. In contrast, high PPUE was associated with lower allocation to Pi and metabolite P, with PPUE being negatively correlated with the percentage of these two fractions. Furthermore, a lower allocation to Pi and metabolite P was correlated with a greater allocation to nucleic acid P, but not to lipid P. Collectively, our results suggest that a different allocation to foliar P fractions, rather than preferential P allocation to specific leaf tissues, underlies the contrasting PPUE among chickpea genotypes.


Assuntos
Cicer , Fósforo , Fósforo/metabolismo , Cicer/genética , Folhas de Planta/metabolismo , Fotossíntese , Genótipo , Lipídeos/análise
6.
Front Plant Sci ; 13: 1036258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570951

RESUMO

Introduction: Biological N2 fixation in feather-mosses is one of the largest inputs of new nitrogen (N) to boreal forest ecosystems; however, revealing the fate of newly fixed N within the bryosphere (i.e. bryophytes and their associated organisms) remains uncertain. Methods: Herein, we combined 15N tracers, high resolution secondary ion mass-spectrometry (NanoSIMS) and a molecular survey of bacterial, fungal and diazotrophic communities, to determine the origin and transfer pathways of newly fixed N2 within feather-moss (Pleurozium schreberi) and its associated microbiome. Results: NanoSIMS images reveal that newly fixed N2, derived from cyanobacteria, is incorporated into moss tissues and associated bacteria, fungi and micro-algae. Discussion: These images demonstrate that previous assumptions that newly fixed N2 is sequestered into moss tissue and only released by decomposition are not correct. We provide the first empirical evidence of new pathways for N2 fixed in feather-mosses to enter the boreal forest ecosystem (i.e. through its microbiome) and discuss the implications for wider ecosystem function.

7.
Plant Cell Environ ; 45(5): 1490-1506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128687

RESUMO

Halophytes accumulate and sequester high concentrations of salt in vacuoles while maintaining lower levels of salt in the cytoplasm. The current data on cellular and subcellular partitioning of salt in halophytes are, however, limited to only a few dicotyledonous C3 species. Using cryo-scanning electron microscopy X-ray microanalysis, we assessed the concentrations of Na, Cl, K, Ca, Mg, P and S in various cell types within the leaf-blades of a monocotyledonous C4 halophyte, Rhodes grass (Chloris gayana). We also linked, for the first time, elemental concentrations in chloroplasts of mesophyll and bundle sheath cells to their ultrastructure and photosynthetic performance of plants grown in nonsaline and saline (200 mM NaCl) conditions. Na and Cl accumulated to the highest levels in xylem parenchyma and epidermal cells, but were maintained at lower concentrations in photosynthetically active mesophyll and bundle sheath cells. Concentrations of Na and Cl in chloroplasts of mesophyll and bundle sheath cells were lower than in their respective vacuoles. No ultrastructural changes were observed in either mesophyll or bundle sheath chloroplasts, and photosynthetic activity was maintained in saline conditions. Salinity tolerance in Rhodes grass is related to specific cellular Na and Cl distributions in leaf tissues, and the ability to regulate Na and Cl concentrations in chloroplasts.


Assuntos
Tolerância ao Sal , Plantas Tolerantes a Sal , Cloroplastos/metabolismo , Íons/metabolismo , Folhas de Planta/metabolismo , Poaceae/metabolismo , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Vacúolos/metabolismo
8.
Infect Genet Evol ; 96: 105152, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34823027

RESUMO

Tabanids (syn. horse flies) are biting-flies of medical and veterinary significance because of their ability to transmit a range of pathogens including trypanosomes - some species of which carry a combined health and biosecurity risk. Invertebrate vectors responsible for transmitting species of Trypanosoma between Australian wildlife remains unknown, thus establishing the role of potential vector candidates such as tabanids is of utmost importance. The current study aimed to investigate the presence of indigenous trypanosomes in tabanids from an endemic area of south-west Australia. A total of 148 tabanids were collected, with morphological analysis revealing two subgenera: Scaptia (Pseudoscione) and S. (Scaptia) among collected flies. A parasitological survey using an HRM-qPCR and sequencing approach revealed a high (105/148; 71%) prevalence of trypanosomatid DNA within collected tabanids. Individual tissues - proboscis (labrum, labium and mandibles, hypopharynx), salivary glands, proventriculus, midgut, and hindgut and rectum - were also tested from a subset of 20 tabanids (n = 140 tissues), confirming the presence of Trypanosoma noyesi in 31% of screened tissues, accompanied by T. copemani (3%) and T. vegrandis/T.gilletti (5%). An unconfirmed trypanosomatid sp. was also detected (9%) within tissues. The difference between tissues infected with T. noyesi compared with tissues infected with other trypanosome species was statistically significant (p < 0.05), revealing T. noyesi as the more frequent species detected in the tabanids examined. Fluorescence in situ hybridisation (FISH) and scanning electron microscopy (SEM) confirmed intact parasites within salivary glands and the proboscis respectively, suggesting that both biological and mechanical modes of transmission could occur. This study reveals the presence of Australian Trypanosoma across tabanid tissues and confirms intact parasites within tabanid salivary glands and the proboscis for the first time. Further investigations are required to determine whether tabanids have the vectorial competence to transmit Australian trypanosomes between wildlife.


Assuntos
Dípteros/parasitologia , Insetos Vetores/parasitologia , Trypanosoma/isolamento & purificação , Tripanossomíase/veterinária , Animais , Animais Selvagens , Biosseguridade , Tripanossomíase/parasitologia , Tripanossomíase/transmissão , Austrália Ocidental
9.
Sci Data ; 8(1): 254, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593819

RESUMO

We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.


Assuntos
Bases de Dados Factuais , Fenótipo , Plantas , Austrália , Fenômenos Fisiológicos Vegetais
10.
Pathogens ; 10(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34451502

RESUMO

A growing number of indigenous trypanosomes have been reported to naturally infect a variety of Australian wildlife with some species of Trypanosoma implicated in the population decline of critically endangered marsupials. However, the mode of transmission of Australian trypanosomes is unknown since their vectors remain unidentified. Here we aimed to fill this current knowledge gap about the occurrence and identity of indigenous trypanosomes in Australian invertebrates by conducting molecular screening for the presence of Trypanosoma spp. in native ticks collected from south-west Australia. A total of 231 ticks (148 collected from vegetation and 83 retrieved directly from 76 marsupial hosts) were screened for Trypanosoma using a High-Resolution Melt (HRM) qPCR assay. An overall Trypanosoma qPCR positivity of 37% (46/125) and 34% (26/76) was detected in questing ticks and host-collected (i.e., feeding) ticks, respectively. Of these, sequencing revealed 28% (35/125) of questing and 28% (21/76) of feeding ticks were infected with one or more of the five species of trypanosome previously reported in this region (T. copemani, T. noyesi, T. vegrandis, T. gilletti, Trypanosoma sp. ANU2). This work has confirmed that Australian ticks are capable of harbouring several species of indigenous trypanosome and likely serve as their vectors.

11.
Physiol Plant ; 172(3): 1724-1738, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33665808

RESUMO

The calcifuge habit of plants is commonly explained in terms of high soil pH and its effects on nutrient availability, particularly that of phosphorus (P). However, most Proteaceae that occur on nutrient-impoverished soils in south-western Australia are calcifuge, despite their ability to produce cluster-roots, which effectively mobilize soil P and micronutrients. We hypothesize that the mechanism explaining the calcifuge habit in Proteaceae is their sensitivity to P and calcium (Ca), and that soil-indifferent species are less sensitive to the interaction of these nutrients. In this study, we analyzed growth, gas-exchange rate, and chlorophyll fluorescence of two soil-indifferent and four calcifuge Hakea and Banksia (Proteaceae) species from south-western Australia, across a range of P and Ca concentrations in hydroponic solution. We observed Ca-enhanced P toxicity in all analyzed species, but to different extents depending on distribution type and genus. Increasing P supply enhanced plant growth, leaf biomass, and photosynthetic rates of soil-indifferent species in a pattern largely independent of Ca supply. In contrast, positive physiological responses to increasing [P] in calcifuges were either absent or limited to low Ca supply, indicating that calcifuges were far more sensitive to Ca-enhanced P toxicity. In calcifuge Hakeas, we attributed this to higher leaf [P], and in calcifuge Banksias to lower leaf zinc concentration. These differences help to explain these species' contrasting sensitivity to Ca-enhanced P toxicity and account for the exclusion of most Proteaceae from calcareous habitats. We surmise that Ca-enhanced P toxicity is a major factor explaining the calcifuge habit of Proteaceae, and, possibly, other P-sensitive plants.


Assuntos
Proteaceae , Hábitos , Fósforo , Folhas de Planta/química , Solo , Austrália Ocidental
12.
Microbiome ; 9(1): 44, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33583434

RESUMO

BACKGROUND: Sponges are increasingly recognised as key ecosystem engineers in many aquatic habitats. They play an important role in nutrient cycling due to their unrivalled capacity for processing both dissolved and particulate organic matter (DOM and POM) and the exceptional metabolic repertoire of their diverse and abundant microbial communities. Functional studies determining the role of host and microbiome in organic nutrient uptake and exchange, however, are limited. Therefore, we coupled pulse-chase isotopic tracer techniques with nanoscale secondary ion mass spectrometry (NanoSIMS) to visualise the uptake and translocation of 13C- and 15N-labelled dissolved and particulate organic food at subcellular level in the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Halisarca caerulea. RESULTS: The two sponge species showed significant enrichment of DOM- and POM-derived 13C and 15N into their tissue over time. Microbial symbionts were actively involved in the assimilation of DOM, but host filtering cells (choanocytes) appeared to be the primary site of DOM and POM uptake in both sponge species overall, via pinocytosis and phagocytosis, respectively. Translocation of carbon and nitrogen from choanocytes to microbial symbionts occurred over time, irrespective of microbial abundance, reflecting recycling of host waste products by the microbiome. CONCLUSIONS: Here, we provide empirical evidence indicating that the prokaryotic communities of a high and a low microbial abundance sponge obtain nutritional benefits from their host-associated lifestyle. The metabolic interaction between the highly efficient filter-feeding host and its microbial symbionts likely provides a competitive advantage to the sponge holobiont in the oligotrophic environments in which they thrive, by retaining and recycling limiting nutrients. Sponges present a unique model to link nutritional symbiotic interactions to holobiont function, and, via cascading effects, ecosystem functioning, in one of the earliest metazoan-microbe symbioses. Video abstract.


Assuntos
Microbiota/fisiologia , Nutrientes/metabolismo , Poríferos/metabolismo , Poríferos/microbiologia , Simbiose , Animais , Carbono/metabolismo , Nitrogênio/metabolismo
13.
J Exp Bot ; 72(8): 3279-3293, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33543268

RESUMO

Lack of O2 and high concentrations of iron (Fe) and manganese (Mn) commonly occur in waterlogged soils. The development of a barrier to impede radial O2 loss (ROL) is a key trait improving internal O2 transport and waterlogging tolerance in plants. We evaluated the ability of the barrier to ROL to impede the entry of excess Fe into the roots of the waterlogging-tolerant grass Urochloa humidicola. Plants were grown in aerated or stagnant deoxygenated nutrient solution with 5 µM or 900 µM Fe. Quantitative X-ray microanalysis was used to determine cell-specific Fe concentrations at two positions behind the root apex in relation to ROL and the formation of apoplastic barriers. At a mature zone of the root, Fe was 'excluded' at the exodermis where a suberized lamella was evident, a feature also associated with a strong barrier to ROL. In contrast, the potassium (K) concentration was similar in all root cells, indicating that K uptake was not affected by apoplastic barriers. The hypothesis that the formation of a tight barrier to ROL impedes the apoplastic entry of toxic concentrations of Fe into the mature zones of roots was supported by the significantly higher accumulation of Fe on the outer side of the exodermis.


Assuntos
Oxigênio , Raízes de Plantas , Ferro , Poaceae , Solo
14.
Chemosphere ; 264(Pt 1): 128438, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33032230

RESUMO

Ptilotus exaltatus accumulates phosphorus (P) to > 40 mg g-1 without toxicity symptoms, while Kennedia prostrata is intolerant of increased P supply. What physiological mechanisms underlie this difference and protect P. exaltatus from P toxicity? Ptilotus exaltatus and K. prostrata were grown in a sandy soil with low-P, high-P and P-pulse treatments. Both species hyperaccumulated P (>20 mg g-1) under high-P and P-pulse treatments; shoot dry weight was unchanged for P. exaltatus, but decreased by >50% for K. prostrata. Under high-P, in young fully-expanded leaves, both species accumulated P predominantly as inorganic P. However, P. exaltatus preferentially allocated P to mesophyll cells and stored calcium (Ca) as occasional crystals in specific lower mesophyll cells, separate from P, while K. prostrata preferentially allocated P to epidermal and spongy mesophyll cells, but co-located P and Ca in palisade mesophyll cells where granules with high [P] and [Ca] were evident. Mesophyll cellular [P] correlated positively with [potassium] for both species, and negatively with [sulfur] for P. exaltatus. Thus, P. exaltatus tolerated a very high leaf [inorganic P] (17 mg g-1), associated with P and Ca allocation to different cell types and formation of Ca crystals, thereby avoiding deleterious precipitation of Ca3(PO4)2. It also showed enhanced [potassium] and decreased [sulfur] to balance high cellular [P]. Phosphorus toxicity in K. prostrata arose from co-location of Ca and P in palisade mesophyll cells. This study advances understanding of leaf physiological mechanisms for high P tolerance in a P-hyperaccumulator and indicates P. exaltatus as a promising candidate for P-phytoextraction.


Assuntos
Amaranthaceae , Fósforo , Cálcio , Folhas de Planta , Solo
15.
J Exp Bot ; 72(4): 1490-1505, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33170269

RESUMO

Very few of the >650 Proteaceae species in south-western Australia cope with the high calcium (Ca) levels in young, calcareous soils (soil indifferent); most are Ca sensitive and occur on nutrient-impoverished, acidic soils (calcifuge). We assessed possible control points for Ca transport across roots of two soil-indifferent (Hakea prostrata and Banksia prionotes) and two calcifuge (H. incrassata and B. menziesii) Proteaceae. Using quantitative X-ray microanalysis, we investigated cell-specific elemental Ca concentrations at two positions behind the apex in relation to development of apoplastic barriers in roots of plants grown in nutrient solution with low or high Ca supply. In H. prostrata, Ca accumulated in outer cortical cells at 20 mm behind the apex, but [Ca] was low in other cell types. In H. incrassata, [Ca] was low in all cells. Accumulation of Ca in roots of H. prostrata corresponded to development of apoplastic barriers in the endodermis. We found similar [Ca] profiles in roots and similar [Ca] in leaves of two contrasting Banksia species. Soil-indifferent Hakea and Banksia species show different strategies to inhabit calcareous soils: H. prostrata intercepts Ca in roots, reducing transport to shoots, whereas B. prionotes allocates Ca to specific leaf cells.


Assuntos
Proteaceae , Fósforo , Raízes de Plantas/química , Solo , Austrália Ocidental
16.
Ticks Tick Borne Dis ; 12(1): 101596, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126202

RESUMO

Trypanosomes are blood-borne parasites infecting a range of mammalian hosts worldwide. In Australia, an increasing number of novel Trypanosoma species have been identified from various wildlife hosts, some of which are critically endangered. Trypanosoma noyesi is a recently described species of biosecurity concern, due to a close relationship to the South American human pathogen, Trypanosoma cruzi. This genetic similarity increases the risk for introduction of T. cruzi via a local vector. Unfortunately, there is a lack of knowledge concerning the vectorial capacity of Australian invertebrates for native Trypanosoma species. Australian ixodid ticks (Ixodidae), which are widespread ectoparasites of mammalian wildlife, have received the most attention as likely candidates for trypanosome transmission and have been previously implicated as vectors. However, as all studies to date have focused on blood-fed ticks collected directly from infected mammalian hosts, the question of whether ticks maintain a trypanosome infection between blood meals is unknown. In this study, we investigated the presence of Trypanosoma within 148 Australian adult and nymph questing ticks of the species Amblyomma triguttatum, Ixodes australiensis, Ixodes myrmecobii and larvae Ixodes spp., collected from an endemic region of south-west Australia. Using a novel HRM-qPCR detection method that can discriminate between species of Trypanosoma based on primer melting temperature (Tm), we report the first molecular detection of Trypanosoma DNA in Australian questing ticks, with 6 ticks DNA positive for T. noyesi. Additionally, the presence of intact T. noyesi parasites within all (n = 3) smeared gut and gland contents of questing ticks was confirmed using a fluorescence in situ hybridisation (FISH) assay. Whilst this study was unable to determine the in situ tissue location of trypanosomes for the purpose of discerning a potential route of transmission, these combined molecular and FISH smear data indicate that trypanosomes can persist in ticks between blood meals and that ticks are possibly vectors in the transmission of T. noyesi between native wildlife. Transmission experiments are still required to evaluate the competency of Australian ticks as vectors for T. noyesi. Nevertheless, these novel findings warrant further investigation concerning potential life stages and the development of trypanosomes in both Australian, and other, tick species.


Assuntos
Ixodidae/parasitologia , Trypanosoma/isolamento & purificação , Animais , Feminino , Hibridização in Situ Fluorescente , Ixodidae/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/parasitologia , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/parasitologia , Austrália Ocidental
17.
Front Microbiol ; 11: 2018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013744

RESUMO

AIMS: Arbuscule-producing fine root endophytes (FRE) (previously incorrectly Glomus tenue) were recently placed within subphylum Mucoromycotina; the first report of arbuscules outside subphylum Glomeromycotina. Here, we aimed to estimate nutrient concentrations in plant and fungal structures of FRE and to test the utility of cryo-scanning electron microscopy (cryoSEM) for studying these fungi. METHODS: We used replicated cryoSEM and X-ray microanalysis of heavily colonized roots of Trifolium subterraneum. RESULTS: Intercellular hyphae and hyphae in developed arbuscules were consistently very thin; 1.35 ± 0.03 µm and 0.99 ± 0.03 µm in diameter, respectively (mean ± SE). Several intercellular hyphae were often adjacent to each other forming "hyphal ropes." Developed arbuscules showed higher phosphorus concentrations than senesced arbuscules and non-colonized structures. Senesced arbuscules showed greatly elevated concentrations of calcium and magnesium. CONCLUSION: While uniformly thin hyphae and hyphal ropes are distinct features of FRE, the morphology of fully developed arbuscules, elevated phosphorus in fungal structures, and accumulation of calcium with loss of structural integrity in senesced arbuscules are similar to glomeromycotinian fungi. Thus, we provide evidence that FRE may respond to similar host-plant signals or that the host plant may employ a similar mechanism of association with FRE and AMF.

18.
New Phytol ; 228(3): 869-883, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32726881

RESUMO

Endemism and rarity have long intrigued scientists. We focused on a rare endemic and critically-endangered species in a global biodiversity hotspot, Grevillea thelemanniana (Proteaceae). We carried out plant and soil analyses of four Proteaceae, including G. thelemanniana, and combined these with glasshouse studies. The analyses related to hydrology and plant water relations as well as soil nutrient concentrations and plant nutrition, with an emphasis on sodium (Na) and calcium (Ca). The local hydrology and matching plant traits related to water relations partially accounted for the distribution of the four Proteaceae. What determined the rarity of G. thelemanniana, however, was its accumulation of Ca. Despite much higher total Ca concentrations in the leaves of the rare G. thelemanniana than in the common Proteaceae, very few Ca crystals were detected in epidermal or mesophyll cells. Instead of crystals, G. thelemanniana epidermal cell vacuoles contained exceptionally high concentrations of noncrystalline Ca. Calcium ameliorated the negative effects of Na on the very salt-sensitive G. thelemanniana. Most importantly, G. thelemanniana required high concentrations of Ca to balance a massively accumulated feeding-deterrent carboxylate, trans-aconitate. This is the first example of a calcicole species accumulating and using Ca to balance accumulation of an antimetabolite.


Assuntos
Proteaceae , Cálcio , Células do Mesofilo , Folhas de Planta , Solo
19.
Trends Parasitol ; 35(8): 596-606, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229455

RESUMO

Trypanosomes are global blood parasites that infect a wide range of vertebrate hosts. Several species of Trypanosoma cause disease in humans and domesticated animals, and the majority are transmitted between hosts by haematophagous invertebrate vectors. Ticks have long been speculated as vectors for Australian trypanosomes. Recent studies using advanced molecular techniques have refocused attention on these arthropods, and whilst they have renewed discussions about Trypanosoma species and their vectors, these reports have simultaneously led to premature conclusions concerning the role of ticks as vectors. Here the controversy surrounding ticks as trypanosome vectors is discussed. We highlight the unanswered questions concerning the role played by ticks in trypanosome transmission and suggest future approaches to resolving these key knowledge gaps.


Assuntos
Vetores Artrópodes/parasitologia , Carrapatos/parasitologia , Trypanosoma/fisiologia , Tripanossomíase/transmissão , Animais , Austrália , Especificidade de Hospedeiro , Humanos
20.
J Exp Bot ; 70(18): 4991-5002, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31106833

RESUMO

Salinity tolerance is associated with Na 'exclusion' from, or 'tissue tolerance' in, leaves. We investigated whether two contrasting chickpea genotypes, salt-tolerant Genesis836 and salt-sensitive Rupali, differ in leaf tissue tolerance to NaCl. We used X-ray microanalysis to evaluate cellular Na, Cl, and K concentrations in various cell types within leaflets and also in secretory trichomes of the two chickpea genotypes in relation to photosynthesis in control and saline conditions. TEM was used to assess the effects of salinity on the ultrastructure of chloroplasts. Genesis836 maintained net photosynthetic rates (A) for the 21 d of salinity treatment (60 mM NaCl), whereas A in Rupali substantially decreased after 11 d. Leaflet tissue [Na] was low in Genesis836 but had increased markedly in Rupali. In Genesis836, Na was accumulated in epidermal cells but was low in mesophyll cells, whereas in Rupali cellular [Na] was high in both cell types. The excessive accumulation of Na in mesophyll cells of Rupali corresponded to structural damage to the chloroplasts. Maintenance of photosynthesis and thus salinity tolerance in Genesis836 was associated with an ability to 'exclude' Na from leaflets and in particular from the photosynthetically active mesophyll cells, and to compartmentalize Na in epidermal cells.


Assuntos
Cicer/fisiologia , Células do Mesofilo/metabolismo , Tolerância ao Sal , Sódio/metabolismo , Cloro/metabolismo , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...